LAS NITRORREDUCTASAS Y SU APLICACIÓN EN BIOTECNOLOGÍA
DOI:
https://doi.org/10.19136/kuxulkab.a17n32.382Abstract
Las nitrorreductasas (NR) son un grupo de enzimas ampliamente distribuidas en bacterias, archaea y algunos organismos eucariotas. Son flavoproteínas dependientes de NAD(P)H, que es utilizado como donador fisiológico de electrones para la reducción del grupo nitro presente en una gran variedad de sustratos, produciendo los derivados hidroxilamino o amino correspondientes, así como también para la reducción de quinonas y flavinas. El cofactor flavínico de las nitrorreductasas es el FMN. La actividad nitrorreductasa también se asocia a una diversidad de enzimas, incluyendo la xantina oxidasa, la aldehído oxidasa, varias flavoproteínas, la NADPH–citocromo P450 reductasa y el citocromo P450. Las isoenzimas principales del citocromo P450 (CYP) que exhiben actividad nitrorreductasa son las isoenzimas CYP1A2, CYP3A4 y CYP2B10.Downloads
References
Abayomi O. 2007. Molecular strategies of microbial adaptation to xenobiotics in natural environment. Biotech. Mol. Biol. Rev., 2: 1–13
Aiub C.A., Mazzei J.L., Pinto L.F., Felzenszwalb I. 2006. Evaluation of nitroreductase and acetyltransferase participation in N–nitrosodiethylamine genotoxicity. Chem.-Biol. Interact., 161: 146-154 DOI: https://doi.org/10.1016/j.cbi.2006.03.012
Anuseviĉius Z, Martínez-Julvez M, Genzor DG, Nivinskas H, Gómez-Moreno C, Ĉènas N. 1997. Electron transfer reactions of Anabaena PCC7119 ferredoxin NADP+ reductase with nonphysiological oxidants. Biochim. Biophys. Acta, 1320: 247-255 DOI: https://doi.org/10.1016/S0005-2728(97)00028-5
Asnis R.E. 1957. The reduction of furacin by cell-free extracts of furacinresistant and parent–susceptible strains of Escherichia coli. Arch. Biochem. Biophys., 66: 208-216 DOI: https://doi.org/10.1016/0003-9861(57)90551-9
Beland F.A., Kadlubar F.F. 1990. Metabolic activation and DNA adducts of aromatic amines and nitroaromatic hydrocarbons. In: Cooper CS, Grover PL (eds.), Chemical Carcinogenesis and Mutagenesis. Springer–Verlag, Berlin, pp 267–325. DOI: https://doi.org/10.1007/978-3-642-74775-5_8
Bironaitè DA, Ĉènas N, Kulys JJ. 1991. The rotenone–insensitive reduction of quinones and nitrocompounds by mitochondrial NADH: ubiquinone reductase. Biochim. Biophys. Acta, 1060: 203-209 DOI: https://doi.org/10.1016/S0005-2728(09)91008-8
Black J.G. 1999. Bioremediation. In: Microbiology: Principles and Explorations, 4th edition, Prentice Hall Publishers, Upper Saddle River, pp 751–752.
Bryant C.H., DeLuca M. 1991. Purification and characterization of an oxygen–insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J. Biol. Chem., 266: 4119–4125 DOI: https://doi.org/10.1016/S0021-9258(20)64294-6
Bryant D.W., McCalla M., Leelsma M., Laneuville P. 1981. Type I nitroreductases of Escherichia coli. Can. J. Microbiol., 27: 81–86 DOI: https://doi.org/10.1139/m81-013
Choi J.W., Lee J., Nishi K., Kim Y.S., Jung C.H., Kim J.S. 2008. Crystal structure of a minimal nitroreductase, ydjA, from “Escherichia coli” K12 with and without FMN cofactor. J. Mol. Biol., 377: 258–267 DOI: https://doi.org/10.1016/j.jmb.2008.01.004
Denny W.A. 2002. Nitroreductase–based GDEPT. Curr. Pharm. Des., 8: 1349–1361 DOI: https://doi.org/10.2174/1381612023394584
Fouts J.R., Brodie B.B. 1957. The enzymatic reduction of chloramphenicol p–nitrobenzoic acid and the other aromatic nitro–compounds in mammals. J. Pharmacol. Exp. Ther., 119: 197–207 DOI: https://doi.org/10.1016/S0022-3565(25)11830-2
Gerrits M.M., van der Wouden E.J., Bax D.A., van Zwet A.A., van Vliet A.H.M., de Jong A., Kusters J.G., Thijs J.C., Kuipers E.J. 2004. Role of the rdxA and frxA genes in oxygen–dependent metronidazole resistance of Helicobacter pylori. J. Med. Microbiol., 53: 1123–1128. DOI: https://doi.org/10.1099/jmm.0.45701-0
Gómez R. 2009. Degradación de compuestos nitroaromáticos por Rhodobacter: Purificación de la nitrorreductasa NprB. Tesis Doctoral. Universidad de Córdoba. España.
Holtzman J.L., Crankshaw D.L., Peterson F.J., Polnaszek C.F. 1981. The kinetics of the aerobic reduction on nitrofurantoin by NADPH–cytochrome P–450 reductase. Mol. Pharmacol., 20: 669–673 DOI: https://doi.org/10.1016/S0026-895X(25)14388-5
Horie S., Watanabe T., Ohta A. 1982. Studies on the enzymatic reduction of C–nitroso compounds. V. Molecular proper t ies of porcine hear t C–nitrosoreductase and identity of this enzyme with NAD(P) H dehydrogenase. J. Biochem., 92: 661–71 DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a133977
Kadiyala V., Nadeau L.J., Spain J.C. 2003. Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho–aminophenols. Appl. Environ. Microbiol., 69: 6520–6526 DOI: https://doi.org/10.1128/AEM.69.11.6520-6526.2003
Kim H.Y., Song H.G. 2005. Purification and characterization of NAD(P)H–dependent nitroreductase I from Klebsiella sp. C1 and enzymatic transformation of 2,4,6–trinitrotoluene. Appl. Microbiol. Biotech., 68: 766–773 DOI: https://doi.org/10.1007/s00253-005-1950-1
Knox R.J., Connors T.A. 1997. Prodrugs in cancer chemotherapy. Pathol. Oncol. Res., 3: 309–324 DOI: https://doi.org/10.1007/BF02904292
Knox R.J., Friedlos F., Boland M.P. 1993. The bioactivation of CB1954 and its use in antibody–directed enzyme prodrug therapy (ADEPT). Cancer Metast. Rev., 12: 195–212 DOI: https://doi.org/10.1007/BF00689810
Knox R.J., Burke P.J., Chen S., Kerr D.J. 2003. CB1954: from the Walker tumor to NQO2 and VDEPT. Curr. Pharm. Des., 9: 2091–2104 DOI: https://doi.org/10.2174/1381612033454108
Koder R.L., Miller A.F. 1998. Steady–state kinetic mechanism, stereospecificity, substrate and inhibitor specificity of Enterobacter cloacae ni t roreductase. Biochim. Biophys. Acta, 1387: 395–405 DOI: https://doi.org/10.1016/S0167-4838(98)00151-4
Koder R.L., Haynes C.A., Rodgers M.E., Rodgers D.W., Miller A.F. 2002. Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases. Biochemistry, 41: 14197–14205 DOI: https://doi.org/10.1021/bi025805t
Kutcher W., McCalla D. 1984. Aerobic reduction of 5–nitro–2–furaldehyde semicarbazone by rat liver xanthine dehydrogenase. Biochem. Pharmacol., 33: 799–805 DOI: https://doi.org/10.1016/0006-2952(84)90465-9
Lewis T.A., Newcombe D.A., Crawford R.L. 2004. Bioremediation of soils contaminated with explosives. J. Environ. Manag., 70: 291–307 DOI: https://doi.org/10.1016/j.jenvman.2003.12.005
Marques de Oliveira I, Pêgas J.A., Bonatto D. 2007. In silico dentification of a new group of specific bacterial and fungal nitroreductase–like proteins. Biochem. Biophys. Res. Commu., 355: 919–925 DOI: https://doi.org/10.1016/j.bbrc.2007.02.049
Mason R.P., Holtzman J.L. 1975a. The role of catalytic superoxide formation in the O2 inhibition of nitroreductase. Biochem. Biophys. Res. Commun., 67: 1267–1274 DOI: https://doi.org/10.1016/0006-291X(75)90163-1
Mason R.P., Holtzman J.L. 1975b. The mechanism of microsomal and mitochondrial nitroreductase. Electron spin resonance evidence for nitroaromatic free radical intermediates. Biochemistry, 14: 1626–1632 DOI: https://doi.org/10.1021/bi00679a013
McCalla D.R., Reuvers A., Kaiser C. 1971. Activation of nitrofurazone in animal tissues. Biochem. Pharmacol. 20: 3532–3537. DOI: https://doi.org/10.1016/0006-2952(71)90459-X
Miskiniene V., Šarlauskas J., Jacquot J., Čėnas N. 1998. Nitroreductase reactions of Arabidopsis thaliana thioredoxin reductase. Biochim. Biophys. Acta, 1366: 275–283 DOI: https://doi.org/10.1016/S0005-2728(98)00128-5
Moreno S., Mason R., Docampo R. 1984. Reduction of nifurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria. J. Biol. Chem., 259: 6298–6305 DOI: https://doi.org/10.1016/S0021-9258(20)82140-1
Nishino S.F., Spain J.C. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol., 59: 2520–2525 DOI: https://doi.org/10.1128/aem.59.8.2520-2525.1993
Nokhbeh M.R., Boroumandi S., Pokorny N., Koziarz P., Paterson E.S., Lambert I.B. 2002. Identification and characterization of SnrA, an inducible oxygen–insensitive nitroreductase in Salmonella enterica serovar Typhimurium TA1535. Mut. Res., 508: 59–70 DOI: https://doi.org/10.1016/S0027-5107(02)00174-4
Orna V.M., Mason R.P. 1989. Correlation of kinetic parameters of nitroreductase enzymes with redox properties of nitroaromatic compounds. J. Biol. Chem., 264: 12379–12384 DOI: https://doi.org/10.1016/S0021-9258(18)63869-4
Padda R.S., Wang. C., Hughes J.B., Bennett G.N. 2003. Mutagenicity of nitroaromatic explosives during anaerobic transformation by Clostridium acetobutyl icum. Environ. Toxicol . Chem., 22: 2293–2297 DOI: https://doi.org/10.1897/02-220
Rafii F., Franklin W., Heflich R.H., Cerniglia C.E. 1991. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl. Environ. Microbiol., 57: 962–968 DOI: https://doi.org/10.1128/aem.57.4.962-968.1991
Ramos J.L., González-Pérez M.M., Caballero A., van Dillewijn P. 2005. Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr. Opin. Biotech., 16: 275–281 DOI: https://doi.org/10.1016/j.copbio.2005.03.010
Rieger P.G., Knackmuss H.J. 1995. Basic knowledge and perspectives on biodegradation of 2,4,6–trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed.), Biodegradation of Nitroaromatic Compounds. Plenum Press, New York, pp 1–18. DOI: https://doi.org/10.1007/978-1-4757-9447-2_1
Rieger P.G., Meier H.M., Gerle M., Vogt U., Groth T., Knackmuss H.J. 2002. Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J. Biotech., 94: 101–123. DOI: https://doi.org/10.1016/S0168-1656(01)00422-9
Riley R.J., Workman P. 1992. DT–diaphorase in cancer chemotherapy. Biochem. Pharmacol., 43: 1657–1669 DOI: https://doi.org/10.1016/0006-2952(92)90694-E
Roldán M.D., Pérez–Reinado E., Castillo F. Moreno–Vivián C. 2008. Reduct ion of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev., 32: 474–500 DOI: https://doi.org/10.1111/j.1574-6976.2008.00107.x
Rooseboom M., Commandeur J.N.M., Vermeulen N.P.E. 2004. Enzyme–catalyzed activation of anticancer prodrugs. Pharmacol. Rev., 56: 53–102 DOI: https://doi.org/10.1124/pr.56.1.3
Šarlauskas J., Nemeikai tė–Čėnienė A., Anusevičius Ž., Misevičienė L., Marozienė A., Markevičius A., Narimantas Čėnas. 2004. Enzymatic redox properties of novel nitrotriazole explosives implications for their toxicity. Z. Naturforsch, 59: 399–404 DOI: https://doi.org/10.1515/znc-2004-5-620
Searle P.F., Chen M.J., Hu L., Race P.R., Lovering A.L., Grove J.I., Guise C., Jaberipour M., James N.D., Mautner V., Young L.S., Kerr D.J., Mountain A., White S.A., Hyde E.I. 2004. Nitroreductase: a prodrug–activating enzyme for cancer gene therapy. Clin. Experimen. Pharmacol. Physiol., 31: 811–816 DOI: https://doi.org/10.1111/j.1440-1681.2004.04085.x
Smyth G., Orsi B. 1989. Nitroreductase activity of NADH dehydrogenase of the respiratory redox chain. Biochem. J., 257: 859–863 DOI: https://doi.org/10.1042/bj2570859
Spain J.C. 1995a. Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol., 49: 523–555 DOI: https://doi.org/10.1146/annurev.mi.49.100195.002515
Ueda O., Kitamura S., Ohashi K., Sugihara K., Ohta S. 2003. Xanthine oxidase–calalyzed metabolism of 2–nitrofluorene, a carcinogenic air pollutant, in rat skin. Drug Metab. Dispos., 31: 367–372 DOI: https://doi.org/10.1124/dmd.31.4.367
Wardman P., Clarke E.D. 1976. Oxygen inhibition of nitroreductase: electron transfer from nitro radical–anions to oxygen. Biochem. Biophys. Res. Commun., 69: 942–949. DOI: https://doi.org/10.1016/0006-291X(76)90464-2
Watanabe M., Ishidate M., Nohmi T. 1990. Nucleotide sequence of Salmonella typhimurium nitroreductase gene. Nucleic Acids Res., 18: 1059 DOI: https://doi.org/10.1093/nar/18.4.1059
Watanabe M., Nishino T., Takio K., Sofuni T., Nohmi T. 1998. Purification and characterization of wild–type and mutant “classical” nitroreductases of Salmonella typhimurium. J. Biol. Chem., 273: 23922–23928 DOI: https://doi.org/10.1074/jbc.273.37.23922
Whiteway J., Koziarz P.J., Veall V., Sandhu N., Kumar P., Hoecher B., Lambert I.B. 1998. Oxygen–insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5–nitrofuran derivatives in Escherichia coli. J. Bacteriol., 180: 5529–5539 DOI: https://doi.org/10.1128/JB.180.21.5529-5539.1998
Xu G., McLeod H.L. 2001. Strategies for enzyme/prodrug cancer therapy. Clin. Cancer Res., 7: 3314–3324
Zbaida S. 2002. Nitroreductases and azoreductases. Enzyme systems that metabolise drugs and other xenobiotics. Curr. Toxicol. Series, 16: 555–566 DOI: https://doi.org/10.1002/0470846305.ch16
Zenno S., Koike H., Kumar A.N., Jayarman R., Tanokura M., Saigo K. 1996a. Biochemical characterization of NfsA, the Escherichia coli mayor nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J. Bacteriol., 178:4508–4514 DOI: https://doi.org/10.1128/jb.178.15.4508-4514.1996
Zenno S., Koike H., Tanokura M., Saigo K. 1996b. Gene cloning, purification and characterization of NfsB, a minor oxygen–insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRaseI, the major flavin reductase in Vibrio fischeri. J. Biochem., 120: 736–744 DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a021473
Zenno S., Kobori T., Tanokura M., Saigo K. 1998a. Conversion of NfsA, the major Escherichia coli nitroreductase, to a flavin reductase with an activity similar to that of Frp, a flavin reductase in Vibrio harveyi, by a single amino acid substitution. J. Bacteriol., 180: 422–425 DOI: https://doi.org/10.1128/JB.180.2.422-425.1998
Downloads
Published
Issue
Section
License
- Los autores que publiquen en Kuxulkab' aceptan las siguientes condiciones como política de acceso abierto:
- Que conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribucion de "Creative Commons", que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- El autor puede realizar otros acuerdos contractuales independientes o adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista, como por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro, siempre que se indique claramente que el trabajo se publicó por primera vez en esta revista.





