CELLULAR EFFECTS OF EXPOSURE TO PLASTIC MICROPARTICLES IN AQUATIC ORGANISMS

Authors

  • Gabriel Núñez Nogueira Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), así como profesor e investigador de la División Académica de Ciencias Biológicas (DACBiol), Universidad Juárez Autónoma de Tabasco (UJAT).
  • Mórvila Cruz Ascencio Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), Universidad Juárez Autónoma de Tabasco (UJAT). , Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), Universidad Juárez Autónoma de Tabasco (UJAT). https://orcid.org/0000-0002-9787-8383 (unauthenticated)
  • Alejandra Pérez López Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez Autónoma de Tabasco (UJAT). , Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez Autónoma de Tabasco (UJAT). https://orcid.org/0000-0001-9671-4902 (unauthenticated)
  • Carlos Alfonso Álvarez González Laboratorio de Fisiología y Recursos Acuáticos, en la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez AAutónoma de Tabasco (UJAT). , Laboratorio de Fisiología y Recursos Acuáticos, en la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez AAutónoma de Tabasco (UJAT). https://orcid.org/0000-0001-9240-0041 (unauthenticated)

DOI:

https://doi.org/10.19136/kuxulkab.a28n60.4667

Keywords:

Cellular damage, Microplastics, Aquatic organisms, Fish, Invertebrates

Abstract

Microplastics and nanoplastics are among the most widely distributed pollutants globally and currently concern humanity, mainly because of their durability and the adverse effects it shows in different organisms, both in terrestrial and aquatic environments. It has been shown in laboratory studies that plastics of various types, either simply or in combination with other toxic compounds or elements, elicit potentially harmful responses at the cellular level, such as cell membrane lysis, modulation of membrane receptors, changes in membrane potentials, alterations in permeability, mitochondrial damage, changes in metabolic activities, generation of reactive oxygen species, genotoxicity, DNA damage and apoptosis. However, our knowledge about the effects of microplastics concentrations in the natural environment needs to be improved.

Downloads

Download data is not yet available.

Author Biographies

  • Gabriel Núñez Nogueira, Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), así como profesor e investigador de la División Académica de Ciencias Biológicas (DACBiol), Universidad Juárez Autónoma de Tabasco (UJAT).

    Biólogo por la Universidad Nacional Autónoma de México (UNAM); con doctorado realizado en la Universidad de Londres, Gran Bretaña. Su investigación se centra en la contaminación y toxicología acuática, así como contaminación ambiental y manejo de residuos. Responsable del Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), así como profesor e investigador de la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez Autónoma de Tabasco (UJAT).

  • Mórvila Cruz Ascencio, Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), Universidad Juárez Autónoma de Tabasco (UJAT)., Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), Universidad Juárez Autónoma de Tabasco (UJAT).

    Bióloga y Maestra en Ciencias Ambientales (MCA) por la Universidad Juárez Autónoma de Tabasco (UJAT). Estudiosa de la fauna acuática y ecología de humedales. Colaboradora del Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), Universidad Juárez Autónoma de Tabasco (UJAT).

  • Alejandra Pérez López, Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez Autónoma de Tabasco (UJAT)., Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez Autónoma de Tabasco (UJAT).

    Estudiante de la Maestría en Ciencias Ambientales (MCA) en la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez Autónoma de Tabasco (UJAT). Interesada en toxicología de organismos acuáticos y contaminación acuática; colaboradora del Laboratorio de Hidrobiología y Contaminación Acuática (LHCA), de la DACBiol-UJAT.

  • Carlos Alfonso Álvarez González, Laboratorio de Fisiología y Recursos Acuáticos, en la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez AAutónoma de Tabasco (UJAT)., Laboratorio de Fisiología y Recursos Acuáticos, en la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez AAutónoma de Tabasco (UJAT).

    Doctor en Ciencias por el Centro Interdisciplinario de Ciencias Marinas. Responsable del Laboratorio de Fisiología y Recursos Acuáticos; profesor e investigador de la División Académica de Ciencias Biológicas (DACBiol), de la Universidad Juárez AAutónoma de Tabasco (UJAT).

References

Ahrendt, C.; Perez-Venegas, D.J.; Urbina, M.; Gonzalez, C.; Echeveste, P.; Aldana, M.; Pulgar J. & Galbán-Malagón, C. (2020). Microplastic ingestion cause intestinal lesions in the intertidal fish 'Girella laevifrons'. Marine Pollution Bulletin, 151: 110795. DOI «https://doi.org/10.1016/j.marpolbul.2019.110795» DOI: https://doi.org/10.1016/j.marpolbul.2019.110795

Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K. & Walter, P. (2002). Transport into the cell from the plasma membrane: endocytosis. In: Authors; Molecular Biology of the Cell (4th ed.; website). New York; United States of America: Garland Science. Available from «https://www.ncbi.nlm.nih.gov/books/NBK26870/»

Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M. & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4): 1704-1724. DOI «https://doi.org/10.1021/acs.est.7b05559» DOI: https://doi.org/10.1021/acs.est.7b05559

Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S. & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12(5): 339-344. DOI «https://doi.org/10.1038/s41561-019-0335-5» DOI: https://doi.org/10.1038/s41561-019-0335-5

Amelia, T.S.M.; Khalik, W.M.A.W.M.; Ong, M.C.; Shao, Y.T.; Pan, H.J. & Bhubalan, K. (2021). Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Progress in Earth and Planetary Science, 8:12. DOI «https://doi.org/10.1186/s40645-020-00405-4» DOI: https://doi.org/10.1186/s40645-020-00405-4

Banerjee, A. & Shelver, W.L. (2021). Micro- and nanoplastic induced cellular toxicity in mammals: a review. Science of the Total Environment, 755: 142518. DOI «https://doi.org/10.1016/j.scitotenv.2020.142518» DOI: https://doi.org/10.1016/j.scitotenv.2020.142518

Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Carvalho, C. & Guilhermino, L. (2018). Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in 'Dicentrarchus labrax' juveniles. Scientific Reports, 8(1): 15655. DOI «https://doi.org/10.1038/s41598-018-34125-z» DOI: https://doi.org/10.1038/s41598-018-34125-z

Besseling, E.; Foekema, E.M.; van den Heuvel-Greve, M.J. & Koelmans, A.A. (2017). The effect of microplastic on the uptake of chemicals by the Lugworm 'Arenicola marina' (L.) under environmentally relevant exposure conditions. Environmental Science and Technology, 51(15): 8795-8804. DOI «https://doi.org/10.1021/acs.est.7b02286» DOI: https://doi.org/10.1021/acs.est.7b02286

Bojic, S.; Falco, M.M.; Stojkovic, P.; Ljujic, B.; Gazdic Jankovic, M.; Armstrong, L.; Markovic, N.; Dopazo, J.; Lako, M.; Bauer, R. & Stojkovic, M. (2020). Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes. Stem Cells, 38(10): 1321-1325. DOI «https://doi.org/10.1002/stem.3244» DOI: https://doi.org/10.1002/stem.3244

Bollaín Pastor, C. & Vicente Agulló, D. (2019). Presencia de microplásticos en aguas y su potencial impacto en salud pública. Revista Española de Salud Pública, 93: e1-10. Recuperado de «https://scielo.isciii.es/pdf/resp/v93/1135-5727-resp-93-e201908064.pdf»

Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T. & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental Science and Technology, 45(21): 9175-9179. DOI «https://doi.org/10.1021/es201811s» DOI: https://doi.org/10.1021/es201811s

Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M. & Thompson, R.C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, 'Mytilus edulis' (L.). Environmental Science and Technology, 42(13): 5026-5031. DOI «https://doi.org/10.1021/es800249a» DOI: https://doi.org/10.1021/es800249a

Browne, M.A.; Niven, S.J.; Galloway, T.S.; Rowland, S.J. & Thompson, R.C. (2013). Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Current Biology, 23(23): 2388-2392. DOI «https://doi.org/10.1016/j.cub.2013.10.012» DOI: https://doi.org/10.1016/j.cub.2013.10.012

Bussolaro, D.; Wright, S.L.; Schnell, S.; Schirmer, K.; Bury, N.R. & Arlt, V.M. (2019). Co-exposure to polystyrene plastic beads and polycyclic aromatic hydrocarbon contaminants in fish gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells derived from rainbow trout ('Oncorhynchus mykiss'). Environmental Pollution, 248, 706-714. DOI «https://doi.org/10.1016/j.envpol.2019.02.066» DOI: https://doi.org/10.1016/j.envpol.2019.02.066

Campos, D.; Rodrigues, A.C.M.; Rocha, R.J.M.; Martins, R.; Candeias-Mendes, A.; Castanho, S.; Soares, F.; Pousão-Ferreira, P.; Soares, A.M.V.M.; Gravato, C. & Patrício Silva, A.L. (2021). Are microplastics impairing marine fish larviculture? — preliminary results with 'Argyrosomus regius'. Water, 13(1): 104. DOI «https://doi.org/10.3390/w13010104» DOI: https://doi.org/10.3390/w13010104

Castañeta, G.; Gutiérrez, A.F.; Nacaratte, F. & Manzano, C.A. (2020). Microplásticos: un contaminante que crece en todas las esferas ambientales, sus características y posibles riesgos para la salud pública por exposición. Revista Boliviana de Química, 37(3): 160-175. DOI «https://doi.org/10.34098/2078-3949.37.3.4» DOI: https://doi.org/10.34098/2078-3949.37.3.4

Chen, G.; Feng, Q. & Wang, J. (2020). Mini-review of microplastics in the atmosphere and their risks to humans. Science of the Total Environment, 703: 135504. DOI «https://doi.org/10.1016/j.scitotenv.2019.135504» DOI: https://doi.org/10.1016/j.scitotenv.2019.135504

Chua, E.M.; Shimeta, J.; Nugegoda, D.; Morrison, P.D. & Clarke, B.O. (2014). Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, 'Allorchestes compressa'. Environmental Science and Technology, 48(14): 8127-8134. DOI «https://doi.org/10.1021/es405717z» DOI: https://doi.org/10.1021/es405717z

Dawson, A.; Huston, W.; Kawaguchi, S.; King, C.; Cropp, R.; Wild, S.; Eisenmann, P.; Townsend, K. & Bengtson, N.S. (2018). Uptake and depuration kinetics influence microplastic bioaccumulation and toxicity in antarctic krill ('Euphausia superba'). Environmental Science & Technology, 52(5): 3195-3201. DOI «https://doi.org/10.1021/acs.est.7b05759» DOI: https://doi.org/10.1021/acs.est.7b05759

Ding, J.; Zhang, S.; Razanajatovo, R.M.; Zou, H. & Zhu, W. (2018). Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia ('Oreochromis niloticus'). Environmental Pollution, 238: 1-9. DOI «https://doi.org/10.1016/j.envpol.2018.03.001» DOI: https://doi.org/10.1016/j.envpol.2018.03.001

Domingos, R.F.; Baalousha, M.A.; Ju-Nam, Y.; Reid, M.M.; Tufenkji, N.; Lead, J.R.; Leppard, G.G. & Wilkinson, K.J. (2009). Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environmental Science & Technology, 43(19): 7277-7284. DOI «https://doi.org/10.1021/es900249m» DOI: https://doi.org/10.1021/es900249m

Escobar Condor, E.W.; Izquierdo Villasante, Y.; Macedo Riva, A.; Remuzgo Panduro, G. & Huiman Cruz, A. (2019). Impacto de la ingesta de residuos plásticos en peces. Revista Kawsaypacha: Sociedad y Medio Ambiente, (4): 79-92. DOI «https://doi.org/10.18800/kawsaypacha.201902.004» DOI: https://doi.org/10.18800/kawsaypacha.201902.004

Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S. & Stohl, A. (2020). Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11(1): 3381. DOI «https://doi.org/10.1038/s41467-020-17201-9» DOI: https://doi.org/10.1038/s41467-020-17201-9

Fadare, O.O. & Okoffo, E.D. (2020). COVID-19 face masks: a potential source of microplastic fibers in the environment. Science of the Total Environment, 737: 140279. DOI «https://doi.org/10.1016/j.scitotenv.2020.140279» DOI: https://doi.org/10.1016/j.scitotenv.2020.140279

García Fernández-Villa, S. & San Andrés Moya, M. (2002). El plástico como bien de interés cultural (I): aproximación a la historia y composición de los plásticos de moldeo naturales y artificiales. PH Boletín, 40/41: 87-102. DOI «https://doi.org/10.33349/2002.40.1415» DOI: https://doi.org/10.33349/2002.40.1415

Gómez Catalán, J.; Timoner Alonso, I.; Castell Garralda, V.; Salas-Salvadó, J.; Sanchís Almenar, V. & Nadal Lomas, M. (2019). Microplásticos y nanoplásticos en la cadena alimentaria: situación actual (Informe por el Comité Científico Asesor de Seguridad Alimentaria; p. 33). Barcelona; España: Agencia Catalana de Seguridad Alimentaria (ACSA). Recuperado de «https://acortar.link/PehA5j»

González-Fernández, C.; Díaz Baños, F.G.; Esteban, M.Á. & Cuesta, A. (2021). Functionalized nanoplastics (NPs) increase the toxicity of metals in fish cell lines. International Journal of Molecular Sciences, 22(13): 7141 DOI «https://doi.org/10.3390/ijms22137141» DOI: https://doi.org/10.3390/ijms22137141

Gorrasi, G.; Sorrentino, A. & Lichtfouse, E. (2021). Back to plastic pollution in COVID times. Environmental Chemistry Letters, 19(1): 1-4. DOI «https://doi.org/10.1007/s10311-020-01129-z» DOI: https://doi.org/10.1007/s10311-020-01129-z

Greven, A.C.; Merk, T.; Karagöz, F.; Mohr, K.; Klapper, M.; Jovanović, B. & Palić, D. (2016). Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow ('Pimephales promelas'). Environmental Toxicology and Chemistry, 35(12): 3093-3100. DOI «https://doi.org/https://doi.org/10.1002/etc.3501» DOI: https://doi.org/10.1002/etc.3501

Guerrera, M. C.; Aragona, M.; Porcino, C.; Fazio, F.; Laurà, R.; Levanti, M.; Montalbano, G.; Germanà, G.; Abbate, F. & Germanà, A. (2021). Micro and nano plastics distribution in fish as model organisms: histopathology, blood response and bioaccumulation in different organs. Applied Sciences, 11(13): 5768. DOI «https://doi.org/10.3390/app11135768» DOI: https://doi.org/10.3390/app11135768

Hu, L.; Chernick, M.; Lewis, A.M.; Lee Ferguson, P. & Hinton, D.E. (2020). Chronic microfiber exposure in adult japanese medaka ('Oryzias latipes'). PLoS ONE, 15(3): e0229962. DOI «https://doi.org/10.1371/journal.pone.0229962» DOI: https://doi.org/10.1371/journal.pone.0229962

Huang, J.S.; Koongolla, J.B.; Li, H.X.; Lin, L.; Pan, Y.F.; Liu, S.; He, W.H.; Maharana, D. & Xu, X.R. (2020). Microplastic accumulation in fish from Zhanjiang mangrove wetland, South China. Science of the Total Environment, 708: 134839. DOI «https://doi.org/10.1016/j.scitotenv.2019.134839» DOI: https://doi.org/10.1016/j.scitotenv.2019.134839

Iheanacho, S.C. & Odo, G.E. (2020). Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish ('Clarias gariepinus') exposed to polyvinyl chloride microparticles. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 232: 108741. DOI «https://doi.org/10.1016/j.cbpc.2020.108741» DOI: https://doi.org/10.1016/j.cbpc.2020.108741

Imhof, H.K.; Schmid, J.; Niessner, R.; Ivleva, N.P. & Laforsch, C. (2012). A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods, 10(7): 524-537. DOI «https://doi.org/10.4319/lom.2012.10.524» DOI: https://doi.org/10.4319/lom.2012.10.524

Jeong, C.B.; Kang, H.M.; Lee, M.C.; Kim, D.H.; Han, J.; Hwang, D.S.; Souissi, S.; Lee, S.J.; Shin, K.H.; Park, H.G. & Lee, J.S. (2017). Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod 'Paracyclopina nana'. Scientific Reports, 7: 41323. DOI «https://doi.org/10.1038/srep41323» DOI: https://doi.org/10.1038/srep41323

Jovanović, B.; Gökdağ, K.; Güven, O.; Emre, Y.; Whitley, E.M. & Kideys, A.E. (2018). Virgin microplastics are not causing imminent harm to fish after dietary exposure. Marine Pollution Bulletin, 130: 123-131. DOI «https://doi.org/10.1016/j.marpolbul.2018.03.016» DOI: https://doi.org/10.1016/j.marpolbul.2018.03.016

Khan, F.R.; Syberg, K.; Shashoua, Y. & Bury, N.R. (2015). Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish ('Danio rerio'). Environmental Pollution, 206: 73-79. DOI «https://doi.org/10.1016/j.envpol.2015.06.009» DOI: https://doi.org/10.1016/j.envpol.2015.06.009

Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; Mclaughlin, M.J. & Lead, J.R. (2008). Nanomaterials in the environment: behaviour, fate, bioavailablity, and effects. Environmental Toxicology and Chemistry, 27(9): 1825-1851. DOI «https://doi.org/10.1897/08-090.1» DOI: https://doi.org/10.1897/08-090.1

Lambert, S. & Wagner, M. (2017). Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 46(22): 6855-6871. DOI «https://doi.org/10.1039/c7cs00149e» DOI: https://doi.org/10.1039/C7CS00149E

Lawrence, E. (Comp.). (2014). Diccionario de Biología, (Trad. Henderson’s Dictionary of Biology; p. 622). México: Editorial Trillas. ISBN 978-607-17-2057-3.

Lawrence, E. (Edit.). (2003). Diccionario Akal de Términos Biológicos, (12va ed.; Henderson’s Dictionary of Biological Terms; R. Codes Valcarce & Fco. J. Espino Nuño, Trad.; p. 688). Madrid, España: Ediciones Akal. ISBN 84-460-1582X.

Lee, H.; Lee, H.J. & Kwon, J.H. (2019). Estimating microplastic-bound intake of hydrophobic organic chemicals by fish using measured desorption rates to artificial gut fluid. Science of the Total Environment, 651-1: 162-170. DOI «https://doi.org/10.1016/j.scitotenv.2018.09.068» DOI: https://doi.org/10.1016/j.scitotenv.2018.09.068

Limonta, G.; Mancia, A.; Benkhalqui, A.; Bertolucci, C.; Abelli, L.; Fossi, M.C. & Panti, C. (2019). Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish. Scientific Reports, 9(1): 15775. DOI «https://doi.org/10.1038/s41598-019-52292-5» DOI: https://doi.org/10.1038/s41598-019-52292-5

Liu, Q.; Chen, C.; Li, M.; Ke, J.; Huang, Y.; Bian, Y.; Guio, S.; Wu, Y.; Han, Y. & Liu, M. (2020). Neurodevelopmental toxicity of polystyrene nanoplastics in 'Caenorhabditis elegans' and the regulating effect of presenilin. ACS Omega, 5(51): 33170-33177. DOI «https://doi.org/10.1021/acsomega.0c04830» DOI: https://doi.org/10.1021/acsomega.0c04830

Mattsson, K.; Ekvall, M.T.; Hansson, L.A.; Linse, S.; Malmendal, A. & Cedervall, T. (2015). Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environmental Science and Technology, 49(1): 553-561. DOI «https://doi.org/10.1021/es5053655» DOI: https://doi.org/10.1021/es5053655

Mazurais, D.; Ernande, B.; Quazuguel, P.; Severe, A.; Huelvan, C.; Madec, L.; Mouchel, O.; Soudant, P.; Robbens, J.; Huvet, A. & Zambonino-Infante, J. (2015). Evaluation of the impact of polyethylene microbeads ingestion in European sea bass ('Dicentrarchus labrax') larvae. Marine Environmental Research, 112-a: 78-85. DOI «https://doi.org/10.1016/j.marenvres.2015.09.009» DOI: https://doi.org/10.1016/j.marenvres.2015.09.009

Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32(8): 967-976. DOI «https://doi.org/10.1016/j.envint.2006.06.014» DOI: https://doi.org/10.1016/j.envint.2006.06.014

Oberdörster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives, 112(10): 1058-1062. DOI «https://doi.org/10.1289/ehp.7021» DOI: https://doi.org/10.1289/ehp.7021

Parker, B.; Andreou, D.; Green, I.D. & Britton, J.R. (2021). Microplastics in freshwater fishes: occurrence, impacts and future perspectives. Fish and Fisheries, 22(3): 467-488. DOI «https://doi.org/10.1111/faf.12528» DOI: https://doi.org/10.1111/faf.12528

Peacock, A.J. & Calhoun, A. (2006). Polymer chemistry: properties and applications (p. 397). Munich: Hanser Gardner Publications. ISBN-10: 1569903972, ISBN-13: 978-1569903971. DOI: https://doi.org/10.3139/9783446433434

Pedà, C.; Caccamo, L.; Fossi, M.C.; Gai, F.; Andaloro, F.; Genovese, L.; Perdichizzi, A.; Romeo, T. & Maricchiolo, G. (2016). Intestinal alterations in european sea bass 'Dicentrarchus labrax' (Linnaeus, 1758) exposed to microplastics: preliminary results. Environmental Pollution, 212: 251-256. DOI «https://doi.org/10.1016/j.envpol.2016.01.083» DOI: https://doi.org/10.1016/j.envpol.2016.01.083

PlasticEurope. (2020). Plásticos-Situación en 2020: un análisis de los datos sobre producción, demanda y residuos de plásticos en Europa (p. 64). Madrid; España: PlasticEurope; European Association of Plastics Recycling & Recovery Organisations (EPRO). Recuperado de «https://acortar.link/a1NdTV»

Rochman, C.M.; Hoh, E.; Kurobe, T. & Teh, S.J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3: 3263. DOI «https://doi.org/10.1038/srep03263» DOI: https://doi.org/10.1038/srep03263

Romano, N.; Renukdas, N.; Fischer, H.; Shrivastava, J.; Baruah, K.; Egnew, N. & Sinha, A.K. (2020). Differential modulation of oxidative stress, antioxidant defense, histomorphology, ion-regulation and growth marker gene expression in goldfish ('Carassius auratus') following exposure to different dose of virgin microplastics. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 238: 108862. DOI «https://doi.org/10.1016/j.cbpc.2020.108862» DOI: https://doi.org/10.1016/j.cbpc.2020.108862

SAPEA (Science Advice for Policy by European Academies). (2019). A scientific perspective on microplastics in nature and society (Evidence Review Report #4, p. 176). Berlin; Germany: author. ISBN 978-3-9820301-0-4. DOI «https://doi.org/10.26356/microplastics»

Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T. & Liebmann, B. (2019). Detection of various microplastics in human stool: a prospective case series. Annals of Internal Medicine, 171(7): 453-457. DOI «https://doi.org/10.7326/M19-0618» DOI: https://doi.org/10.7326/M19-0618

Sendra, M.; Pereiro, P.; Yeste, M.P.; Mercado, L.; Figueras, A. & Novoa, B. (2021). Size matters: Zebrafish ('Danio rerio') as a model to study toxicity of nanoplastics from cells to the whole organism. Environmental Pollution, 268-a: 115769. DOI «https://doi.org/10.1016/j.envpol.2020.115769» DOI: https://doi.org/10.1016/j.envpol.2020.115769

Sendra, M.; Saco, A., Yeste, M.P.; Romero, A.; Novoa, B. & Figueras, A. (2020). Nanoplastics: from tissue accumulation to cell translocation into 'Mytilus galloprovincialis' hemocytes. resilience of immune cells exposed to nanoplastics and nanoplastics plus 'Vibrio splendidus' combination. Journal of Hazardous Materials, 388: 121788. DOI «https://doi.org/10.1016/j.jhazmat.2019.121788» DOI: https://doi.org/10.1016/j.jhazmat.2019.121788

Sendra, M.; Sparaventi, E.; Blasco, J.; Moreno-Garrido, I. & Araujo, C.V.M. (2020). Ingestion and bioaccumulation of polystyrene nanoplastics and their effects on the microalgal feeding of 'Artemia franciscana'. Ecotoxicology and Environmental Safety, 188: 109853. DOI «https://doi.org/10.1016/j.ecoenv.2019.109853» DOI: https://doi.org/10.1016/j.ecoenv.2019.109853

Smith, M.; Love, D.C.; Rochman, C.M. & Neff, R.A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3): 375-386. DOI «https://doi.org/10.1007/s40572-018-0206-z» DOI: https://doi.org/10.1007/s40572-018-0206-z

Suman, T.Y.; Jia, P.P.; Li, W.G.; Junaid, M.; Xin, G.Y.; Wang, Y. & Pei, D.S. (2020). Acute and chronic effects of polystyrene microplastics on brine shrimp: first evidence highlighting the molecular mechanism through transcriptome analysis. Journal of Hazardous Materials, 400: 123220. DOI «https://doi.org/10.1016/j.jhazmat.2020.123220» DOI: https://doi.org/10.1016/j.jhazmat.2020.123220

Thompson, R.C.; Moore, C.J.; vom Saal, F.S. & Swan, S.H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: biological sciences, 364(1526): 2153-2166. DOI «https://doi.org/10.1098/rstb.2009.0053» DOI: https://doi.org/10.1098/rstb.2009.0053

Von Moos, N.; Burkhardt-Holm, P. & Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel 'Mytilus edulis' L. after an experimental exposure. Environmental Science and Technology, 46(20): 11327-11335. DOI «https://doi.org/10.1021/es302332w» DOI: https://doi.org/10.1021/es302332w

Wegner, A.; Besseling, E.; Foekema, E.M.; Kamermans, P. & Koelmans, A.A. (2012). Effects of nanopolystyrene on the feeding behavior of the blue mussel ('Mytilus edulis' L.). Environmental Toxicology and Chemistry, 31(11): 2490-2497. DOI «https://doi.org/10.1002/etc.1984» DOI: https://doi.org/10.1002/etc.1984

Wright, S.L.; Thompson, R.C. & Galloway, T.S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution (Barking, Essex: 1987), 178: 483-492. DOI «https://doi.org/10.1016/j.envpol.2013.02.031» DOI: https://doi.org/10.1016/j.envpol.2013.02.031

Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A. & Kelly, F.J. (2020). Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environment International, 136: 105411. DOI «https://doi.org/10.1016/j.envint.2019.105411» DOI: https://doi.org/10.1016/j.envint.2019.105411

Yang, H.; Xiong, H.; Mi, K.; Xue, W.; Wei, W. & Zhang, Y. (2020). Toxicity comparison of nano-sized and micron-sized microplastics to Goldfish 'Carassius auratus' Larvae. Journal of Hazardous Materials, 388: 122058. DOI «https://doi.org/10.1016/j.jhazmat.2020.122058» DOI: https://doi.org/10.1016/j.jhazmat.2020.122058

Yin, L.; Liu, H.; Cui, H.; Chen, B.; Li, L. & Wu, F. (2019). Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish ('Sebastes schlegelii'). Journal of Hazardous Materials, 380: 120861. DOI «https://doi.org/10.1016/j.jhazmat.2019.120861» DOI: https://doi.org/10.1016/j.jhazmat.2019.120861

Yu, P.; Liu, Z.; Wu, D.; Chen, M.; Lv, W. & Zhao, Y. (2018). Accumulation of polystyrene microplastics in juvenile 'Eriocheir sinensis' and oxidative stress effects in the liver. Aquatic Toxicology, 200: 28-36. DOI «https://doi.org/10.1016/j.aquatox.2018.04.015» DOI: https://doi.org/10.1016/j.aquatox.2018.04.015

Zitouni, N.; Bousserrhine, N.; Missawi, O.; Boughattas, I.; Chèvre, N.; Santos, R.; Belbekhouche, S.; Alphonse, V.; Tisserand, F.; Balmassiere, L.; Pereira Dos Santos, S.; Mokni, M.; Guerbej, H. & Banni, M. (2021). Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish 'Dicentrarchus labrax'. Journal of Hazardous Materials, 403: 124055. DOI «https://doi.org/10.1016/j.jhazmat.2020.124055» DOI: https://doi.org/10.1016/j.jhazmat.2020.124055

Downloads

Published

2022-01-17

How to Cite

Núñez Nogueira, G., Cruz Ascencio, M., Pérez López, A., & Álvarez González, C. A. (2022). CELLULAR EFFECTS OF EXPOSURE TO PLASTIC MICROPARTICLES IN AQUATIC ORGANISMS. Kuxulkab’, 28(60), 35-51. https://doi.org/10.19136/kuxulkab.a28n60.4667

Most read articles by the same author(s)

<< < 1 2